反馈控制系统学习笔记#5
Steady-state Performance
DC gain 被定义为 zero frequency 处的 gain。
对于上面这个反馈系统:
Open-loop t.f.: \(L(s) = G(s)K(s)\),
the open-loop DC gain is \(G(0)K(0)\).
Closed-loop t.f.: \(G_{\mbox{cl}}(s) = \frac{G(s)K(s)}{1 + G(s)K(s)}\),
the closed-loop DC gain is \(G_{\mbox{cl}}(0) = \frac{G(0)K(0)}{1 + G(0)K(0)}\).
Consider steady-state errors in stable systems for general polynomial inputs
\[
r(t) = rt^{n - 1}
\]
它的拉普拉斯变换为 \(R(s) = \frac{Cr}{s^n}\) where \(C = (n - 1)!\)。
Steady-state error is given by
\[
e_{\mbox{ss}} = \lim_{s \rightarrow 0} \frac{Cr}{s^{n - 1} + s^{n - 1}G(s)K(s)}
\]
If \(G(s)K(s)\) contains \(n\) or more integrators, then the closed loop system will track an input given by \(r(t) = rt^{n−1}\) without any steady state error.
用表格表示:
\(r(t) = rt^{n - 1}\) | Constant input \[\begin{align}r(t) &= r\newline R(s) &= \frac{r}{s}\newline n &= 1\end{align}\] |
Ramp input \[\begin{align}r(t) &= rt\newline R(s) &= \frac{r}{s^2}\newline n&= 2\end{align}\] |
Parabolic input \[\begin{align}r(t) &= rt^2\newline R(s) &= \frac{2r}{s^3}\newline n &= 3\end{align}\] |
---|---|---|---|
0 integrator in the loop | \(\frac{r}{1 + p}\) | \(\infty\) | \(\infty\) |
1 integrator in the loop | \(0\) | \(\frac{r}{p}\) | \(\infty\) |
2 integrator in the loop | \(0\) | \(0\) | \(\frac{2r}{p}\) |
3 integrator in the loop | \(0\) | \(0\) | \(0\) |
其中 \(p = P(0)\) 而 \(G(s)K(s) = \frac{1}{s^m}P(s)\)。
用 system type 来分类的话:
Number of integrators in the loop (System Type) | Constant input \[\begin{align}r(t) &= r\newline R(s) &= \frac{r}{s}\end{align}\] |
Ramp input \[\begin{align}r(t) &= rt\newline R(s) &= \frac{r}{s^2}\end{align}\] |
Parabolic input \[\begin{align}r(t) &= rt^2\newline R(s) &= \frac{2r}{s^3}\end{align}\] |
---|---|---|---|
Type 0 | \(\frac{r}{1 + K_p}\) | \(\infty\) | \(\infty\) |
Type 1 | \(0\) | \(\frac{r}{K_v}\) | \(\infty\) |
Type 2 | \(0\) | \(0\) | \(\frac{2r}{K_a}\) |
Type k ≥ 3 | \(0\) | \(0\) | \(0\) |
其中
- Position Error Constant: \(K_p = \lim_{s \rightarrow 0} G(s)K(s)\)
- Velocity Error Constant: \(K_v = \lim_{s \rightarrow 0} sG(s)K(s)\)
- Acceleration Error Constant: \(K_a = \lim_{s \rightarrow 0} s^2G(s)K(s)\)
Transient Performance
Time constant
Consider the first-order system
\[
G(s) = \frac{K}{s\tau + 1}
\]
The larger the \(\tau\), the closer the pole to the origin → the slower the response.
Damping ratio
Consider the standard second-order system
\[
G(s) = \frac{K \omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2}
\]
- \(\zeta < 1\), underdamped system, complex poles: as \(\zeta\) ↑, the response is more sluggish and less oscillations.
- \(\zeta = 1\), critically-damped system, repeated real poles with no oscillations.
- \(\zeta > 1\), over-damped system, distinct real poles.
Natural frequency
Consider the standard second-order system
\[
G(s) = \frac{K \omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2}
\]
The smaller the \(\omega_n\), the more sluggish is the response.