反馈控制系统学习笔记#1
信号
信号是关于时间的函数,可分为连续时间信号和离散时间信号两类。
所有信号都可以由一些基础信号组合构建。
基础信号
constant signal 或者 DC signal
\(
u(t) = k
\)unit step signal
\(
u(t) =
\begin{cases}
0,t<0
\newline
1,t\geq 0
\end{cases}
\)unit ramp signal
\(
u(t) =
\begin{cases}
0,t<0
\newline
t,t\geq 0
\end{cases}
\)sinusoidal signal
\(
\begin{split}
u(t) = &A\mathrm{cos}(wt \pm \phi)
\newline
\mbox{or}\quad &A\mathrm{sin}(wt \pm \phi)
\end{split}
\)exponential signal
\(
u(t) = e^{at}
\)
脉冲信号
Dirac’s delta function 或者说 impulse δ 是一种理想化的信号,满足:
在靠近 t = 0 时特别大
在远离 t = 0 时特别小
函数曲线下面积为 1
函数的具体形状是无所谓的
ϵ 很小
在图中 δ 被表示为一个箭头:
The δ function is defined with the following property:
\(
\int_a^b f(t) \delta (t) \mathrm{d} t = f(0)
\), provided \(a<0\), \(b>0\), and \(f\) is continous at \(t = 0\).
Scaled impulses & Sifting property
\(\alpha \delta (t - T)\) is an impulse at time \(T\), with magnitude \(\alpha\)
\(\int_a^b \alpha \delta (t - T)f(t)\mathrm{d}t = \alpha f(T)\)
for \(a < T < b\) and \(f\) is continuous at \(T\).
Physical interpretation
Impulse function are used to model physical signals
- that act over short time intervals
- whose effect depends on integral of signal
系统
A system can be viewed as a process in which input signals are transformed by the system or cause the system to respond in some way, resulting in other signals as output.
系统互联
串联:\(y = G(Fu) = GFu\)
并联:\(y = Fu + Gu\)
反馈:\(y = F(u - Gy)\)
系统建模
Differential Equations Model of Physical Systems
Electrical Circuits
电阻:\(v_R(t) = Ri_R(t)\)
电容:\(v_C(t) = \frac{1}{C}\int_0^t i_C(\tau)\mathrm{d}\tau\) 或者 \(i_C(t) = C\frac{\mathrm{d}v_C(t)}{\mathrm{d}t}\)
电感:\(v_L(t) = L\frac{\mathrm{d}i_L(t)}{\mathrm{d}t}\)
Linear motions
(force-displacement relationship)
质量:\(f(t) = M\frac{\mathrm{d}^2x(t)}{\mathrm{d}t}\)
弹簧:\(f(t) = Kx(t)\)
阻尼:\(f(t) = f_v\frac{\mathrm{d}x(t)}{\mathrm{d}t}\)
Angular motions
(torque-angular displacement relationship)
惯性:\(T(t) = J\frac{\mathrm{d}^2\theta(t)}{\mathrm{d}t}\)
弹簧:\(T(t) = K\theta(t)\)
阻尼:\(T(t) = D\frac{\mathrm{d}\theta(t)}{\mathrm{d}t}\)
线性化
许多实体系统是非线性化的。所以需要在 operating point 附近对其进行线性化处理。
方法是泰勒级数展开……
附件
感觉这门课会比较难…信号与系统那门就学得不是很扎实,数学方面也是忘得差不多了。欸,加油吧。