信号

信号是关于时间的函数,可分为连续时间信号和离散时间信号两类。

所有信号都可以由一些基础信号组合构建。

基础信号

  • constant signal 或者 DC signal

    \(
    u(t) = k
    \)

  • unit step signal

    \(
    u(t) =
    \begin{cases}
    0,t<0
    \newline
    1,t\geq 0
    \end{cases}
    \)

  • unit ramp signal

    \(
    u(t) =
    \begin{cases}
    0,t<0
    \newline
    t,t\geq 0
    \end{cases}
    \)

  • sinusoidal signal

    \(
    \begin{split}
    u(t) = &A\mathrm{cos}(wt \pm \phi)
    \newline
    \mbox{or}\quad &A\mathrm{sin}(wt \pm \phi)
    \end{split}
    \)

  • exponential signal

    \(
    u(t) = e^{at}
    \)

脉冲信号

Dirac’s delta function 或者说 impulse δ 是一种理想化的信号,满足:

  • 在靠近 t = 0 时特别大

  • 在远离 t = 0 时特别小

  • 函数曲线下面积为 1

  • 函数的具体形状是无所谓的

  • ϵ 很小

在图中 δ 被表示为一个箭头:

The δ function is defined with the following property:

\(
\int_a^b f(t) \delta (t) \mathrm{d} t = f(0)
\), provided \(a<0\), \(b>0\), and \(f\) is continous at \(t = 0\).

Scaled impulses & Sifting property

\(\alpha \delta (t - T)\) is an impulse at time \(T\), with magnitude \(\alpha\)

\(\int_a^b \alpha \delta (t - T)f(t)\mathrm{d}t = \alpha f(T)\)

for \(a < T < b\) and \(f\) is continuous at \(T\).

Physical interpretation

Impulse function are used to model physical signals

  • that act over short time intervals
  • whose effect depends on integral of signal

系统

A system can be viewed as a process in which input signals are transformed by the system or cause the system to respond in some way, resulting in other signals as output.

系统互联

  • 串联:\(y = G(Fu) = GFu\)

  • 并联:\(y = Fu + Gu\)

  • 反馈:\(y = F(u - Gy)\)

系统建模

Differential Equations Model of Physical Systems

Electrical Circuits

  • 电阻:\(v_R(t) = Ri_R(t)\)

  • 电容:\(v_C(t) = \frac{1}{C}\int_0^t i_C(\tau)\mathrm{d}\tau\) 或者 \(i_C(t) = C\frac{\mathrm{d}v_C(t)}{\mathrm{d}t}\)

  • 电感:\(v_L(t) = L\frac{\mathrm{d}i_L(t)}{\mathrm{d}t}\)

Linear motions

(force-displacement relationship)

  • 质量:\(f(t) = M\frac{\mathrm{d}^2x(t)}{\mathrm{d}t}\)

  • 弹簧:\(f(t) = Kx(t)\)

  • 阻尼:\(f(t) = f_v\frac{\mathrm{d}x(t)}{\mathrm{d}t}\)

Angular motions

(torque-angular displacement relationship)

  • 惯性:\(T(t) = J\frac{\mathrm{d}^2\theta(t)}{\mathrm{d}t}\)

  • 弹簧:\(T(t) = K\theta(t)\)

  • 阻尼:\(T(t) = D\frac{\mathrm{d}\theta(t)}{\mathrm{d}t}\)

线性化

许多实体系统是非线性化的。所以需要在 operating point 附近对其进行线性化处理。

方法是泰勒级数展开……

附件

代数复习

This browser does not support PDFs. Please download the PDF to view it: Download PDF.

电路复习

This browser does not support PDFs. Please download the PDF to view it: Download PDF.


感觉这门课会比较难…信号与系统那门就学得不是很扎实,数学方面也是忘得差不多了。欸,加油吧。